

Cost/Benefit Analysis Surface Water Diversions Bunker Hill Mine Water Project

Presented by

Matt Germon/CH2M HILL Jim Stefanoff /CH2M HILL

CH2MHILL

March 3, 1999

Purpose & Objective

 Not focused on AMD collection, conveyance & storage, or sludge management.

<u>Methodology</u>

TABLE 2Cost Summary of the West and South Fork Milo Creek Diversions
Costs are Order-of-Magnitude

Diversion	Estimated Capital Cost	Estimated O&M Cost (\$/year)	Estimated Net Present Value (30 Years, 5% Interest)
South Fork Milo Creek	\$720,000	\$9,700	\$870,000
West Fork Milo Creek	\$1,060,000	\$10,800	\$1,230,000
Totals	\$1,780,000	\$20,500	\$2,100,000

Figure 1
Savings in Treatment Capital Cost Resulting from a Decrease in Peak Design Treatment Rate

Figure 2
Savings in Treatment O&M NPV Resulting from a Decrease in Average Treatment Rate

Figure 3
Savings in Total Treatment NPV (Capital and O&M) Resulting from a Decrease in Peak and
Average Treatment Rate

TABLE 3Summary of Results

Treatment Option

>750 gpm	0- Upgraded HDS Process
600 gpm	1- Upgraded HDS plus Media Filtration
500 gpm	6a- Upgraded HDS plus Sulfide Addition plus Media Filtration
420 gpm	3a- Upgraded HDS plus Post Iron Co-precipitation plus Media Filtration
420 gpm	4a- Upgraded HDS plus Post Sulfide Precipitation plus Media Filtration
210 gpm	2- Upgraded HDS plus Micro-filtration
190 gpm	6b- Upgraded HDS plus Sulfide Addition plus Micro-Filtration
180 gpm	3b- Upgraded HDS plus Post Iron Co-precipitation plus Micro-Filtration
170 gpm	4b- Upgraded HDS plus Post Sulfide Precipitation plus Micro-Filtration
100 gpm	5- Upgraded HDS plus Media Filtration plus Tertiary Sulfide Functional Ion Exchange
25 gpm	7- Upgraded HDS plus Evaporation and Crystallization

Conclusions

- ♦ Savings in treatment cost > diversion cost for most treatment alternatives
- ◆ Based on "clean" water reductions: Reducing 1% acid & metal load = \$140,000 (30-yr NPV)
- Additional benefits:
 - Reduction in AMD collection system maintenance
 - Increase in AMD storage time in lined pond or lower workings

Recommendations

- ◆ Implement West Fork and South Fork diversions if upgraded HDS or more rigorous processes are selected.
- ◆ Conduct hydrologic analysis to refine peak and average design flow rates with respect to TMDLs and river flow.
- ◆ Conduct C/B Analysis for Deadwood/Inez diversion.
- ◆ Flood-Stanly Workings Evaluation.